Ground Penetrating Radar: Analysis of point diffractors for modeling and inversion
نویسندگان
چکیده
The three electromagnetic properties appearing in Maxwell’s equations are dielectric permittivity, electrical conductivity and magnetic permeability. The study of point diffractors in a homogeneous, isotropic, linear medium suggests the use of logarithms to describe the variations of electromagnetic properties in the earth. A small anomaly in electrical properties (permittivity and conductivity) responds to an incident electromagnetic field as an electric dipole, whereas a small anomaly in the magnetic property responds as a magnetic dipole. Neither property variation can be neglected without justification. Considering radiation patterns of the different diffracting points, diagnostic interpretation of electric and magnetic variations is theoretically feasible but is not an easy task using Ground Penetrating Radar. However, using an effective electromagnetic impedance and an effective electromagnetic velocity to describe a medium, the radiation patterns of a small anomaly behave completely differently with source-receiver offset. Zero-offset reflection data give a direct image of impedance variations while large-offset reflection data contain information on velocity variations.
منابع مشابه
Electromagnetic inversion in monostatic ground penetrating radar: TEM horn calibration and application
A comprehensive analysis of electromagnetic (EM) inversion applied to pavement profiling by using a monostatic ground penetrating radar (GPR) is presented. Since in GPR systems using transfers EM (TEM) horns, the antenna is positioned close to the the investigated medium and a strong EM interaction occurs. This effect is taken into account by modeling the antenna with equivalent sources placed ...
متن کاملProcessing a multifold ground penetration radar data using common-diffraction-surface stack method
Recently, the non-destructive methods have become of interest to the scientists in various fields. One of these method is Ground Penetration Radar (GPR), which can provide a valuable information from underground structures in a friendly environment and cost-effective way. To increase the signal-to-noise (S/N) ratio of the GPR data, multi-fold acquisition is performed, and the Common-Mid-Points ...
متن کاملAdvanced Inversion Techniques for Ground Penetrating Radar
Ground Penetrating Radar (GPR) systems are nowadays standard inspection tools in several application areas, such as subsurface prospecting, civil engineering and cultural heritage monitoring. Usually, the raw output of GPR is provided as a B-scan, which has to be further processed in order to extract the needed information about the inspected scene. In this framework, inverse-scattering-based a...
متن کاملValidation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping
Ground penetrating radar (GPR) is an efficient method for soil moisture mapping at the field scale, bridging the scale gap between small-scale invasive sensors and large-scale remote sensing instruments. Nevertheless, commonly-used GPR approaches for soil moisture characterization suffer from several limitations and the determination of the uncertainties in GPR soil moisture sensing has been po...
متن کاملMapping shallow soil moisture profiles at the field scale using full-waveform inversion of ground penetrating radar data
Full-waveform inversions were applied to retrieve surface, two-layered and continuous soil moisture profiles from ground penetrating radar (GPR) data acquired in an 11-ha agricultural field situated in the loess belt area in central Belgium. The radar system consisted of a vector network analyzer combined with an off-ground horn antenna operating in the frequency range 2002000 MHz. The GPR syst...
متن کامل